Exact value of cos 20 deg + 2sin^2 (55 deg) - sqrt(2) * sin 65 deg * k 8. (A) 1 (B) 1/(sqrt(2)) (C) sqrt(2) (D) zero

3 min read
19 views
Published July 10, 2025
Mathematics
Trigonometry
Standard-angle identities
Sum & difference formulae

Detailed Explanation

Key tools you must know

  1. Pythagorean identity (double-angle form)
2sin2x=1cos(2x)2\sin^2x = 1-\cos(2x)
  1. Co-function identity
sin(90°θ)=cosθ\sin(90°-\theta) = \cos\theta
  1. Angle–sum formula for sine
sin(A+B)=sinAcosB+cosAsinB\sin(A+B) = \sin A\,\cos B + \cos A\,\sin B
  1. Exact values at 45°
sin45°=cos45°=22\sin45° = \cos45° = \frac{\sqrt2}{2}

Student’s logical roadmap

  1. Convert the squared sine term: Replace 2sin255°2\sin^2 55° by 1cos110°1-\cos110°. Because 110°=180°70°110° = 180°-70°, we turn cos110°\cos110° into cos70°-\cos70°. So the whole piece simplifies to 1+cos70°1+\cos70°.

  2. Expand the 65° sine: Recognise 65°=45°+20°65° = 45° + 20°. Use the sum formula and exact sin45°,cos45°\sin45°, \cos45° values, then multiply by 2\sqrt2 so the pesky 2\sqrt2 cancels neatly.

  3. Collect like terms: You will get a +cos20°+\cos20° from the first chunk and a cos20°-\cos20° from the expanded chunk – they cancel. What remains is 1+cos70°sin20°1 + \cos70° - \sin20°.

  4. Use the co-function rule: Replace sin20°\sin20° with cos70°\cos70°. They also cancel, leaving 1.

  5. Match to the options. The only choice equal to 1 is option (A).

Simple Explanation (ELI5)

What’s the question?

We have to find the exact (not decimal-approximate) value of this funny looking mix of cos and sin angles:

cos 20°  +  2·sin²55°  –  √2·sin65°

How do we tame it?

  1. Turn big things into small, friendly ones. We know some special angles like 45°, 60°, 30°. Notice 55° and 65° are close to 45° plus or minus 10° or 20°.
  2. Use identities as Lego bricks. Identities are like Lego pieces that let you replace a messy block with a simpler, nicer-looking one that fits exactly.
    • 2sin2x=1cos(2x)2\sin^2 x = 1-\cos(2x) (Pythagorean double-angle)
    • sin(45°+θ)=22(cosθ+sinθ)\sin(45°+\theta) = \frac{\sqrt2}{2}\big(\cos\theta+\sin\theta\big) (sum formula)
    • sin(90°θ)=cosθ\sin(90°-\theta)=\cos\theta (co-function rule)
  3. Watch pieces cancel out. When you substitute, terms like +cos20°+\cos20° and cos20°-\cos20° magically disappear, leaving a very small remainder.
  4. End up with a single number. All the angle stuff vanishes and we’re left with exactly 1. No calculator needed if you trust the identities!

Step-by-Step Solution

Step-by-step computation

  1. Rewrite the 2sin22\sin^2 term
2sin255°=1cos(2×55°)=1cos110°2\sin^2 55° = 1 - \cos(2\times55°) = 1 - \cos110°

But cos110°=cos(180°70°)=cos70°\cos110° = \cos(180° - 70°) = -\cos70°, so

2sin255°=1+cos70°2\sin^2 55° = 1 + \cos70°
  1. Rewrite the 2sin65°\sqrt2\,\sin65° term

Notice 65°=45°+20°65° = 45° + 20°. Using the sum formula:

sin65°=sin(45°+20°)=sin45°cos20°+cos45°sin20°\sin65° = \sin(45° + 20°) = \sin45°\cos20° + \cos45°\sin20°

Because sin45°=cos45°=22\sin45° = \cos45° = \dfrac{\sqrt2}{2},

sin65°=22(cos20°+sin20°)\sin65° = \frac{\sqrt2}{2}(\cos20° + \sin20°)

Multiply by 2\sqrt2:

2sin65°=2×22(cos20°+sin20°)=cos20°+sin20°\sqrt2\,\sin65° = \sqrt2 \times \frac{\sqrt2}{2}(\cos20° + \sin20°) = \cos20° + \sin20°
  1. Assemble the original expression

Original expression:

cos20°+2sin255°2sin65°\cos20° + 2\sin^2 55° - \sqrt2\,\sin65°

Replace each part:

cos20°+(1+cos70°)(cos20°+sin20°)\cos20° + \big(1 + \cos70°\big) - \big(\cos20° + \sin20°\big)
  1. Cancel like terms
cos20°+1+cos70°cos20°sin20°=1+cos70°sin20°\color{gray}{\cos20°} + 1 + \cos70° - \color{gray}{\cos20°} - \sin20° = 1 + \cos70° - \sin20°
  1. Use the co-function identity (sin20°=cos(90°20°)=cos70°\sin20° = \cos(90°-20°) = \cos70°)
1+cos70°sin20°=1+cos70°cos70°=11 + \cos70° - \sin20° = 1 + \cos70° - \cos70° = 1
  1. Choose the correct option

Option (A) 1\boxed{1}

Examples

Example 1

In alternating-current circuits, expressing power as 2·sin² terms allows engineers to isolate the DC component.

Example 2

GPS signal processing uses angle-sum identities to simplify phase differences between satellites.

Example 3

Optics: Young’s double-slit interference relies on converting sin(A±B) to predict bright & dark fringes.

Example 4

In 3-D graphics, rotations often combine angles; breaking them with sum/difference formulas speeds computation.

Visual Representation

References

  • [1]NCERT Class-XI Mathematics: Chapter on Trigonometric Functions
  • [2]S.L. Loney – Plane Trigonometry Part-1
  • [3]Arihant Skills in Mathematics: Trigonometry by Amit M Agarwal
  • [4]Paul’s Online Math Notes – Trig Identities section (tutorial.math.lamar.edu)
  • [5]IIT JEE Main Previous Year Papers – Trigonometry section

Want to explore more questions?

Try our AI-powered explainer for instant, detailed explanations